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Predictive operation strategies
for future machine concepts

Tobias Topfer, Dennis Jiinemann, Thorsten Stamm von Baumgarten, Rifet Muminovic

Improving the efficiency and performance of agricultural machinery calls for innovative control
approaches. When these approaches are applied at superordinate control unit level to opti-
mize operation behavior, we speak of operation strategies. This paper examines an approach
for structuring an operation strategy that is capable of using predicted cycle information. This
predictive character makes it possible to use optimization processes as a way of achieving
better efficiency and/or performance. A tractor is used as an example application. On account
of its many different work tasks, this demands a highly flexible control approach. The following
article illustrates how this can be shaped, how the necessary sub-elements are configured and
which results can be expected from applying the operation strategy presented.
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The powertrain in mobile work machines consists of many different components. In a tractor, the
main components are the combustion engine, the transmission and the hydraulics. An operation
strategy must ensure that the various components of the powertrain operate in a coordinated and
well-balanced manner. Using a quality criterion (e. g. fuel consumption, maximum area coverage etc.),
the optimization objective can be set for the operation strategy. Operation strategies can be subdivid-
ed into the three configuration levels of

= control-based,

= online optimum and

= predictive strategies.
Complexity and the development and research input increase as we move towards the predictive
operation strategy. Compared with the other types, predictive operation strategies provide the capa-
bility of setting the machine parameters to the future machine state at the best possible time, e.g.
increasing the degree of engine utilization in response to a predicted fall in load by adjusting the
transmission ratio. This not only makes it possible to respond to current operation conditions but also
to act in a predictive way. Furthermore it permits optimization of transient machine states or highly
dynamic load cycles, e.g. Y-cycle for front-loader activities. Prediction has the task of determining
the future load requests given to the machine’s powertrain. Generally speaking, a distinction can be
drawn here between the use of internal and external machine data. External data, for example, can
be soil maps, weather information or logistical data. The approach in hand focuses exclusively on the
use of internal machine data. This means it is possible to use all measurable machine information -
in this case, powertrain information in particular. By recognizing the pattern of machine operation
states and after the system has completed a learning phase, the subsequent operation states can be
predicted with defined probability on the basis of the preceding operation states. Consequently, the
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approach presented here differs from model predictive approaches. Model-based optimization of the
machine only takes place in the system’s optimization element which contains the machine’s actual
operation strategy.

In the passenger car segment, prediction is used, for example, to optimize the flow of energy and
increase driver safety. For instance, a predictive battery and powertrain management system is used
by Back (2005) to match the battery’s state of charge and other powertrain parameters to the predicted
journey. Gossrau (2009) has developed an approach for controlling the cooling system on a predic-
tive basis. Here, cooling system control is influenced by journey-type and journey-profile recognition
information as well as by determining the type of driver, making it possible to increase the tempera-
tures in the system by reducing the safety margin to the maximum permissible temperatures. This
results in lower fuel consumption. Krerscumer et al. (2006) use vehicle speeds and distances between
vehicles to recognize a passing maneuver and predict its duration as a means of increasing driving
safety while passing another vehicle.

Predictive control approaches, e.g. in the form of predictive cruise control, are nowadays state of
the art in commercial vehicles. In addition to the data on the vehicle’s state, they use external infor-
mation, such as the altitude profile and recommended maximum speed for the route traveled as the
basis for predicting the anticipated load cases and determining the most efficient speed and acceler-
ation profile (Terwen 2009, Kern 2013).

Using predictive strategies in mobile work machines, and especially in the tractor, is far more am-
bitious. The particular challenge lies in incorporating many different work processes with associated
disturbance variables and the resultant, fluctuating process parameters, variable ambient conditions
and operator influences. Operation strategies currently used in tractors are usually control-based
strategies to control the drivetrain parameter.

Model-based control approaches are found in the field of controlling the work processes of mobile
work machines. For example, HarpicH (2012) has examined a model-based loading control system for
transferring chopped material in parallel operation. This approach involves a model for configuring
the material cone on the transport unit in relation to throughput, this being taken as the basis for
adjusting the impact point of the jet of chopped material in such a way that the transport unit can
be filled evenly and automatically. Predictive elements are used, for example in the “marion” proj-
ect (ReNekk et al. 2007) as part of planning systems. One example application in this project is the
planning of harvester paths and the planning of transfer points in grain harvesting with the aim of
automating the combine harvester/transfer vehicle combination on the field.

The motivation for developing and applying the approach presented below lies in using it as a
development tool for developing machines as well as in using it in machine deployment practice. The
aim is to extend the operation strategy to cover all of the machine’s power users and optimize the way
in which the machine’s potentials are exploited. Reference is made to Toprer et al. (2014) as the basis
for this paper.

Requisite system components
The approach proposed here with a tractor as the application example comprises the three main com-
ponents work task classification, prediction and optimized operation strategy (Figure 1).
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Figure 1: Potential system structure

Work task classification and measure assignment
The first block, classification of the work task, is needed to ensure that the operation strategy only
uses measures that make sense under the aspects of optimization and are compatible with the ma-
chine’s current work task. The quality of the work result must not be negatively influenced. For ex-
ample, engine speed must only be reduced if the actual speed of a process-relevant work drive unit
can be kept more or less in the region of the target speed. This makes it necessary to classify machine
states first. Here, it is less important for the work task to be identified in any distinct and precise way.
Instead, it is necessary to identify in a learning phase the requirements placed by the current work
task on the machine and the resulting machine states. Against this backdrop, it seems expedient to
define four requirement classes:

= Constant quasi-steady-state cycle (e.g. soil tillage)

= Dynamic, periodically recurring cycle (e.g. Y-cycle)

= Dynamic, non-periodically recurring cycle (e.g. transport activities)

= Work process without or only with intermittent use of propulsion
Each class is assigned a package of measures which can be used by the operation strategy. Individual
package measures can also be excluded by analyzing the operation pattern and operator input.

As applicable measures, it is possible in principle to exploit all control capabilities and the vari-
ability of power users present in the overall system. Besides obvious measures, such as optimizing
engine/transmission management, many other measures are also conceivable (e.g. predictive ther-
mal or generator management). Depending on the measures selected - of which some can be used
without any modifications on the hardware side - applying them influences efficiency, dynamics and
functionality.
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Prediction

The second block in the system’s structure involves predicting future operation states. The informa-
tion used for this can be divided up into external and internal machine data. External data, such as
map material providing information on soil type and relief profile as well as load states of preceding
parallel travel paths, can be used for predicting operation states. Predicting operation states in work
tasks without external machine data, such as GPS data, involves a more complex type of prediction
which evaluates available internal sensor data and uses pattern recognition to permit a prediction of
future operation states (OS) in the time interval from t; to t,. To realize this prediction, it is neces-
sary that cyclical work tasks can be broken down into a finite number of recurring operation states,
with each work task comprising a specific sequence of operation states. Under this prerequisite, it
is theoretically possible to apply probabilistic methods to predict which operation state sequence is
most likely to follow next on the basis of the present and past operation states. Appropriate methods
include hidden Markov models (HMM) and recurrent neural networks (RNN). Compared to RNN, the
HMM has advantages in relation to sequence length and the stability of prediction as well as the way
in which discrete states are handled.

A
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ty Detection and validation of current OS
t, Prediction
tg End of current OS

Figure 2: Recognizing and predicting operation states

The HMM is parameterized in several stages. This involves a learning phase in which the sensor
data are initially recorded, prepared and linearized over time (Krocerus et al. 2013). The character-
istics derived from linearization are assigned to operation states (OS). By way of example, Figure 2
shows sensor signals that have been linearized and assigned to operation states (recognized OS). The
sequence of operation states is referred to as the observation sequence. The observation sequence is
passed on to the HMM from which it is parameterized. With the machine running in similar recurring
operation states, the aim now is to apply this procedure and, on the basis of the operation states de-
termined from the learning phase and the parameterized HMM, assign to the current operation state
(current OS) a previously defined operation state. Together with the previous operation state, this is
passed on to the HMM from which it determines the operation states likely to follow (predicted OS)
and therefore the loads that are likely to be requested from the machine. The prediction quality of the
HMM is evaluated by comparing the predicted operation states (predicted OS) with the recognized
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operation states (recognized OS). In the event of any discrepancies resulting from unknown operation
states, the HMM is re-parameterized. For recurring operation states (e.g. Y-cycle), the prediction can
be implemented and applied in the field of mobile work machines with their many different work
tasks. A significant amount of research must still be done for other irregular load cycles.

Operation strategy and dynamic programming
The third element in the proposed system structure covers the actual operation strategy using the
measures available. Within this approach, dynamic programming is used for determining the opti-
mum machine control signals with respect to the optimization objectives (quality functionals) and
the constraints of state and manipulated variables (Back 2005). One optimization objective frequently
used is the fuel consumption for the cycle under consideration. Other optimization objectives, such
as adjusting machine parameters to suit the current and future power demands, can also be achieved
with this approach. According to GuzzerLa and SciarreTTA (2007), dynamic programming mainly dif-
fers from the optimized control approaches usually encountered in control technology by also being
able to take account of complex constraints of state and manipulated variable. Dynamic programming
furthermore finds the global optimum in relation to the defined optimization problem. The gradi-
ent-based optimization techniques frequently used cannot provide any guarantee of finding the global
optimum. These qualities are crucial to using dynamic programming in the approach presented here.
Figure 3 shows the flow diagram for carrying out deterministic dynamic programming with the
requisite inputs. This optimization method can be used in model-based machine development for
calibrating control parameters as well as online while the machine is operating to determine the
optimum operation parameters. In this case, the prediction results can be used as optimization input
variables in order to adjust the machine to future load requests. It is also expected that this will make
the approach suitable for optimizing transient machine states in dynamic cycles.

Problem definition

State and input
constraints

Initial condition

Final condition

Model and cost
functional

Defined offline Updated online

Minimizing cost functional — solving optimal
control problem with DDP

Optimized operation

strategy

t
J(u®) = 6(x(®) + fH(x(t),u(t),t)dt

Figure 3: Flow diagram - deterministic dynamic programming
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Concept Validation

The approach presented for a predictive operation strategy was developed on a model basis and tested
with the aid of a validated overall machine model. By way of example, the results shown below pres-
ent an excerpt of application areas for the predictive operation strategy. The theoretic field of applica-
tion is very wide and primarily determined by the degrees of freedom of the powertrain components
installed.

In all three examples, the quality functional is fuel consumption. Using machine power output
as a quality functional must be regarded as critical in simulation. This approach usually results in a
significant change in wheel/soil contact and thus in slip values. Generating an accurate simulation of
these relationships is highly complex with today’s state of the art. For this reason, slip conditions are
kept as constant as possible in comparing the various control approaches.

Figure 4 presents an example cycle section. In comparison to a simple shifting strategy (manual
shifting), which shifts exclusively in relation to engine speed, and an intelligent gearshift logic (trans-
mission control unit), the results show the changed shifting behavior in an acceleration cycle. The
changed shifting points make the engine more efficient. This significantly reduces fuel consumption.
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Figure 4: Results of simulating acceleration in a Y-cycle

The second example, presented in Figure 5, also uses deterministic dynamic programming to de-
fine shifting points. In this case, it not only adjusts the transmission ratio but also the power takeoff
ratio. This measure assumes that the tractor has a power-shifting PTO transmission. If prediction
forecasts a phase with a reduced load request (approx. second 22, Figure 5), the operation strategy
optimizes the ratio of the drive transmission at the appropriate moment in order to operate the com-
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bustion engine in a more efficient map range. The PTO shaft ratio must be adjusted to keep PTO shaft
speed constant as combustion engine speed varies. This ensures the operation strategy. The actual
challenge in this example is selecting the time at which the transmission ratios are returned to the
initial state. This must take place before the load requests from the work cycle go up again into full-
load range (e.g. 90 %). Shifting down too late would lower combustion engine speed and, as a result,
reduce working speed. Prediction forecasts the load curve, giving the operation strategy the opportu-
nity to initiate downshifting at an appropriate moment (approx. second 35, Figure 5).
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Figure 5: Varying PTO shaft ratio

The third example application in Figure 6 uses the thermal balance and the thermal masses in the
cooling system to store cooling energy during headland travel. If the tractor drives into the headland
after heavy pulling work, the necessary tractive work is suddenly reduced by lifting the attachment.
This is also accompanied by a reduction in the cooling requirement for the combustion engine and
neighboring components. In this example, the operation strategy is capable of reducing the cooling
water’s setpoint temperature. This increases fan output which, in turn, moves the combustion engine
to a more efficient operation point. This means that specific fuel consumption falls during headland
travel. Machine power output must be increased again when the attachment returns to service. As
soon as it makes sense from an energy point of view, the operation strategy returns the coolant set-
point temperature to its original level. The stored cooling energy that can now be used and the associ-
ated reduction in fan output give the tractor the power reserves needed for pulling work.
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Figure 6: Headland cooling measure

Conclusions

The approach presented shows a way that is suitable for implementing a predictive operation strat-
egy on a future mobile work machine. At the same time, elements of this approach can be applied
even today in model-based machine development and in evaluating and parameterizing control-based
operation strategies. One advantage of this approach lies in the fact that optimization takes account
of the overall system and measures can be used which could probably not be implemented without
prediction. The example results presented demonstrate realistic ways of applying the methodology in
order, for example, to utilize existing efficiency-boosting potentials. Here, the potential saving is high-
ly dependent on the application case. It is not possible to make any general statement in this regard.
The next steps on the way to realizing the presented approach will involve implementing the HMM,
validating the methodology and developing a virtual terminal on which the self-optimizing operation
strategy will be implemented. This terminal will also form the interface to the operator.
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