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Path planning of headland turn manoeuvres
Dennis Sabelhaus, Peter Schulze Lammers, Lars Peter Meyer zu Helligen, Frank Röben

Satellite-based navigation systems offer the possibility to steer agricultural machinery on the 
field automatically within a range of centimeters. A reference line is recorded and – based on 
the position – shifted, so that the entire field can be covered with parallel tracks. However, 
automatic turn manoeuvres from path to path are not yet part of the standard scope of steer-
ing systems.

This article presents a method to generate feasible headland turn manoeuvres. Speed, 
minimum turning radius and the systemic steering speed are used as vehicle-specific param-
eters to plan feasible trajectories. An adaptation of the continuous-curvature path planning – 
known from mobile robotics – is applied. It was verified that the generated turn routines 
could be driven by real machines with steering systems. A precise connection between turn 
manoeuvre and track was ensured.
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Automatic steering systems are increasingly used in modern agriculture to process fields efficiently. 
Tractors and harvesters can use real-time kinematic to navigate on the field in the range of a few 
centimeters. For precise vehicle guidance while turning and other steering-intense manoeuvres, the 
path planning must be adapted to the machine kinematics and dynamics. Below, an adapted method 
of trajectory planning via continuous-curvature paths is explained and finally verified.

Material and methods
To enable steering systems for automatic turning, a realistic trajectory for the machine must be esti-
mated. These routes obey three main criteria that are presented in Figure 1 and must be known for 
path generation. 

 � The minimum turning radius 1–κ  can be calculated automatically by the steering system with 
known maximum steering angle and wheel base. 
 � Further, the maximum lateral acceleration ay, max is shown in Figure 1 (centre). With this value, 

the maximum steering angle dδ—dt
 is limited by the speed, so that the vehicle’s driving behaviour 

remains stable and neither over- nor understeers. 
 � The third limiting variable is the steering speed, which describes the time the actuator system 

changes of maximum left to maximum right steering lock. 
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Some articles have already presented methods to generate turning paths. Oksanen (2007) generated 
turning paths with segments of Bézier splines to minimize the length of the turning path. The turn 
manoeuvre length shall be minimized with cost functions. The complex tractor-trailer combination 
is defined as a common field vehicle and used for problem modelling. It is modelled as a dynamic 
system with 6 states and 2 inputs, restricted in 2D motion. scheuren (2014) shows a method to gen-
erate headland paths for the kinematics of a tractor-like vehicle using grid-based motion primitives. 
In order to achieve the most accurate driving connection to a subsequent track, a very fine-meshed 
grid with potential trajectory points is investigated. VOugiOukas et al. (2006) calculate the trajectories 
numerically using a two-part motion planner and a predefined cost function.

One opportunity to generate feasible trajectories is given by the method of continuous-curvature 
path planning (CC-path planning). In 1997, it was presented by scheuer and Fraichard (1997) to gener-
ate feasible paths between start and end positions. The main advantage is that continuous curvature 
transitions are given (Figure 2). In both representations a start and end point with start and end 
orientation are connected with a trajectory. The composition of minimum turning circles and straight 
lines can be seen in the left illustrated track – also known as Dubins curve (dubins 1957). The curva-
ture course is shown among the Dubins curve. A discontinuity of curvature occurs in transition from 
circle to straight segment. This progress means that the steering wheel position changes abruptly 
from the maximum right turn to straight. Thus, the trajectory can not be driven at a constant speed, 
the vehicle has to be stopped at the black circled transition point. This clear curvature progress can 
be avoided by inserting spiral pieces – called clothoids. The clothoid is described by maximum cur-
vature change of   1   . The curvature change is the first derivative of the curvature and 
thus indicates whether a constant curvature is given. With this introductory clothoid, the curvature 
increases from κ = 0 to κ = κmax. The curvature describes the arcuate deviation of a straight line and 
is the reciprocal of the radius.

Figure 1: Requirements for a planned trajectory: minimum turning radius, maximum lateral acceleration and maxi-
mum steering speed
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The characteristic of a clothoid is the linear change of curvature with which the curvature varies 
in proportion to the clothoid length. kimia et al. (2003) describe the clothoid trajectory points using 
the Fresnel integrals Cf and Sf. The circle centre Ω with its coordinates Ωx and Ωy for the CC-turn can 
be determined by the Fresnel integrals of the introductory clothoid. scheuer and Fraichard (2004) 
have described the formulas with the parameter p  1  and the basic clothoid parameters x, 
y. θ describes the angle of clothoid end points to CC-circle centre.

Ω� � ���������� � �����
�����

� � ������ � �������  1   (Eq. 1)

Ω� � ���������� � �����
�����

� � ������ � ������� 1   (Eq. 2)

In the following, the general case of a CC-turn is listed. The radius Rbig is defined as the distance 
between circle centre and starting point. Equation 3 illustrates the relationship.

���� � ��Ω� � �����������0��� � �Ω� � �����������0���  1   (Eq. 3)

Figure 2: Representation of the curvature profiles of Dubins curves (Dubins 1957) (left) and CC-Paths (Scheurer
and Fraichard 1997) (right)
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Figure 3 shows the construction elements of a CC-circle with angle μ and the associated coun-
ter-angle ε. The angle μ is between the tangent at the CC-circle entry/exit point and the clothoid start/
end orientation. They can be calculated as follows.

� � � � � � ������Ω� � �����������0�
Ω� � �����������0�� 1   (Eq. 4)

The angle ε also indicates the difference between start and end orientation. The minimum an-
gle difference is defined as .  1  . In case of small angle differences (|ε|≤ εmin), a 
complete surrounding circle needs to be planned according to Fraichard and scheuer (2004). To avoid 
this path, they have presented an elementary path. This elementary path has a curvature change 
σ ≤ σmax. The required change in curvature can be specified with:
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�����������2 � ��  1   (Eq. 5)

 

Figure 3: General case of a CC turn with circle centre Ω
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Thus, two symmetrical clothoid segments can be computed and merged (Figure 4).

In order to transfer this idea of CC path planning to path planning of agricultural machinery, the 
following formula connects these two areas.

���������� � �����
2 � � 1   (Eq. 6)

The clothoid length can be described as the product of speed and half the time from maximum 
right to maximum left steering lock. These values are stored in today’s guidance systems and can be 
determined while steering.

Adaption of CC-Paths for headland turn manoeuvres 
Using CC-circles, feasible paths for agricultural machinery can be generated which are limited by 
a minimum turning radius and a maximum curvature change. The indicated turning manoeuvres 
are acceptable for the track distances d that are specified by value ranges in the given formulas of 
Figure 5.

First, the Omega turn is presented whose trajectory resembles the Greek letter. This manoeuvre 
is usual for turning with small working widths into an adjacent, parallel track. It can be described 
as a left-right-left or right-left-right steering combination. This CC path is shown in Figure 5 (left) 
and can be constructed by three CC circles. If the distance d between the start and end point is 
≥ 2 · Rbig · cos(µ) , the CC circle centre point of the upper, middle circle wouldn’t be predictable. If the 
distance d between start and end point is  1  , the Ome-
ga turn is not predictable. Also the U-turn is not calculable, so that a transitional solution is needed 
the gap turn is constructed. A right or left curve is created with three CC circles. Thereby, the middle 
CC circle is planned with distance xmin that as early as possible the introductory CC circle can be left 
without self-encircling and the closing CC circle can be entered.

Figure 4: CC turn for angle differences 0 < ε < εmin
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For all turn manoeuvres with distance  1   , a U-turn is comput-
ed. This turning type consists of an introductory CC-Circle, a straight segment and a closing CC-Circle. The 
length of the straight segment can be described as �������� � ��������� � ���� ∙ sin��� � ������ � ���� ∙ sin���� 1 

With the three shown manouevres, all configurations of turn distances can be computed. However, 
the shortest path length won’t be found in each configuration. More, predictable manoeuvres are not 
shown in this article. sabelhaus et al. (2013) show further manoeuvres by CC-path planning in agri-
cultural scenarios. For example, the so-called fishtail turn with two direction changes can be planned. 
Also minimising the headland was in the focus of turn manoeuvre planning.

Results
As soon as the vehicle enters the headland area, a turn manoeuvre shall be planned and driven au-
tonomously. It must be examined whether the generated paths obey the machine restrictions with 
regard to the kinematics. Because of the variety of turn manoeuvres, the results of an Omega turn 
are shown exemplary. The turning into an adjacent track is investigated. The important parameters, 
which describe a trajectory with regard to drivability, are curvature and curvature change (Fraichard 
und scheuer 2004). Without vehicle modell and simulation, these parameters can be derived by the 
planned trajectory. A cubic spline – a function which is concatenated by piecewise polynomial func-
tions with nth degree – and its curvature calculation is used for trajectory analysis. The formula is 
shown in Equation 7 with its component functions x and y. The curvature change is derived as time-
based curvature.

   1   Eq. 7

Figure 5: Adapted CC-Paths for agricultural Turn Manouevres
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Curvature and curvature change behave as expected (Figure 6, right). The graph shows a curva-
ture course of -0,1 up to 0,1 m-1, what corresponds to the reciprocal of the minimum turning radius 
R = 10 m. The curvature change is limited to σmax ≈ 0,05 m-1 s-1. Curcature and curvature change 
have no discontinuities and the required limits are complied. Thus, it was verified that the planned 
trajectories match the theoretical requirements of the machine kinematics.

The planned trajectory is also verified with real field tests. Also the track accuracy is measured. 
The experimental setup is based on a tractor (CLAAS Axion 840) with steering system (CLAAS S10 
with RTK). The vehicle parameters are known with a minimum turning radius of Rmin = 5.2 m, a 
maximum steering lock-to-lock time of tsteering = 3 s and a constant driving speed v = 6 km h-1. The 
presented methodology has been implemented in Matlab. A generated turn path is tranferred via USB 
as reference line to the steering system. This reference line is driven automatically.

The field test is recorded via navigation sensors of the steering system with RTK correction. The 
recording frequency is defined with 10 Hz. A Matlab script analyses the recording. The quality cri-
terion for path tracking is the cross track error (DLG 2003). It is defined as the distance between re-
corded position and planned trajectory. Figure 7 shows the computed cross track error. The maximum 
error is 0.05 m. Especially the connection to the target track is described with an error of 0.01 m. This 
enables the shown planning method for precise working on the next track. 

Figure 6: Courses of curvature (upper right graph) and curvature change (lower right graph) and planned trajectory 
(left)
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Conclusions
The construction of CC-Paths with its base component CC-Circle simplifies turn manoeuvre computa-
tion and guarantees feasible trajectories in acceptable computation time without spline interpolation/
approximation or other numerical approaches. The initial computed elements circle, straight and 
clothoid – in shifted or rotated form – can be used for any turn manoeuvre. Extensions, e. g. usage in 
strip till, must be developed in further steps.

The presented methodoly can be integrated into a steering system and used as headland automa-
tion. The driver is relieved and can concentrate on tasks like process optimisation or implement con-
trol. Precise track connections enable exact seeding. If no direction changes are planned, the shortest 
possible path is found and so, fuel can be saved. 
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