Konstruktionen und Parameter von asynchronen Elektromotoren für landwirtschaftliche Zwecke

Autor/innen

  • Iryna Sukovitsyna
  • Larisa Vakhonina

DOI:

https://doi.org/10.15150/ae.2025.3351

Abstract

Ziel dieser Untersuchung ist die Analyse der Konstruktionsmerkmale von Asynchronmotoren, die in der Agrartechnik bei der Verarbeitung von Ölsaaten eingesetzt werden. Dabei gilt es, optimale technische Lösungen zu identifizieren, um eine hohe Energieeffizienz, Zuverlässigkeit und Langlebigkeit der Aggregate unter schwierigen Betriebsbedingungen zu gewährleisten. Die Methodik der Studie basiert auf einer Auswertung der Literatur und einer vergleichenden Analyse der Konstruktionsparameter von Motoren unterschiedlicher Leistung. In experimentellen Studien werden die thermischen Bedingungen gemessen und der Einfluss variabler Lastbedingungen auf die technischen Eigenschaften von Elektromotoren bewertet. Die erzielten Ergebnisse zeigen einen wesentlichen Einfluss der Rotorgeometrie, der Wicklungsisolationsklasse und der Gehäusekonstruktion auf die Leistung der Aggregate. Es wird festgestellt, dass Motoren mittlerer Leistung, die mit effizienten Kühl- und Schutzsystemen gegen aggressive Umgebungen ausgestattet sind, unter kurzfristigen Überlastungen einen stabilen Betrieb aufweisen. Die Analyse der Wärmeableitungs- und Verschleißfestigkeitsindikatoren ermöglicht die Ermittlung der optimalen Konstruktionsparameter, die zur Verringerung der Energieverluste und zur Erhöhung der Zuverlässigkeit der Aggregate beitragen.

Literaturhinweise

Abhilash, B.T.; Manjunatha, H.M.; Ranjan N.A.; Tejamoorthy, M.E. (2021): Reliability assessment of induction motor drive using failure mode effects analysis. Journal of Electrical and Electronics Engineering 6(6), pp. 32–36

Amin, M.S.; Rizvi, S.T.H.; Iftikhar, U.; Malik, S.; Faheem, Z.B. (2021): IoT based monitoring and control in smart farming. In: Mohammad Ali Jinnah University International Conference on Computing, Karachi, Institute of Electrical and Electronics Engineers (IEEE), pp. 1–6

Bazaluk, O.; Havrysh, V.; Fedorchuk, M.; Nitsenko, V. (2021): Energy assessment of sorghum cultivation in southern Ukraine. Agriculture 11(8), 695, https://doi.org/10.3390/agriculture11080695

Bekenov, T.; Nussupbek, Z.; Tassybekov, Z. (2020): Evaluation of the Support-Coupling Patency of Self-propelled Transport. Lecture Notes in Intelligent Transportation and Infrastructure F1382, pp. 368–374, https://doi.org/10.1007/978-3-030-39688-6_46

Boglietti, A.; Nategh, S.; Carpaneto, E.; Boscaglia, L.; Scema, C. (2019): An optimization method for cooling system design of traction motors. In: International Electric Machines & Drives Conference. San Diego, CA, Institute of Electrical and Electronics Engineers (IEEE), pp. 1210–1215, https://doi.org/10.1109/IEMDC.2019.8785185

Bulgakov, V.; Nikolaenko, S.; Holovach, I.; Adamchuk, V.; Kiurchev, S.; Ivanovs, S.; Olt, J. (2020a): Theory of grain mixture particle motion during aspiration separation. Agronomy Research 18(1), pp. 18–37, https://doi.org/10.15159/AR.20.057

Bulgakov, V.; Pascuzzi, S.; Ivanovs, S.; Nadykto, V.; Nowak, J. (2020b): Kinematic discrepancy between driving wheels evaluated for a modular traction device. Biosystems Engineering 196, pp. 88–96, https://doi.org/10.1016/j.biosystemseng.2020.05.017

Dekhandji, F.Z.; Halledj, S.E.; Zaboub, O. (2019): Predictive maintenance applied to three-phase induction motors. Algerian Journal of Signals and Systems 4(2), pp. 71–88, https://doi.org/10.51485/ajss.v4i2.84

Dinolova, P.; Ruseva, V.; Dinolov, O. (2023): Energy efficiency of induction motor drives: State of the art, analysis and recommendations. Energies 16(20), 7136, https://doi.org/10.3390/en16207136

Feng, L.; Yang, H.; Song, W. (2020): Acoustic noise of induction motor with low-frequency model predictive control. Institute of Electrical and Electronics Engineers (IEEE) Access 8, pp. 178238-178247, https://doi.org/10.1109/ACCESS.2020.3026070

Gabdullin, M.T.; Khamitova, K.K.; Ismailov, D.V.; Sultangazina, M.N.; Kerimbekov, D.S.; Yegemova, S.S.; Chernoshtan, A.; Schur, D.V. (2019): Use of nanostructured materials for the sorption of heavy metals ions. IOP Conference Series: Materials Science and Engineering 511(1), 12044, https://doi.org/10.1088/1757-899X/511/1/012044

Goncharuk, A.G.; Havrysh, V.I.; Nitsenko, V.S. (2018): National features for alternative motor fuels market. International Journal of Energy Technology and Policy 14(2–3), pp. 226–249, https://doi.org/10.1504/IJETP.2018.10010075

Gutarevych, Y.; Mateichyk, V.; Matijošius, J.; Rimkus, A.; Gritsuk, I.; Syrota, O.; Shuba, Y. (2020): Improving fuel economy of spark ignition engines applying the combined method of power regulation. Energies 13(5), 1076, https://doi.org/10.3390/en13051076

Han, H.-W.; Im, W.-H.; Choi, H.-J.; Cho, S.-J.; Lee, S.-D.; Park, Y.-J. (2022): Effect of sound insulation on noise reduction in an agricultural tractor cab. Scientific Reports 12(1), 22038, https://doi.org/10.1038/s41598-022-26408-3

Harerimana, F.; Peng, H.; Otobo, M.; Luo, F.; Gikunda, M.N.; Mangum, J.M.; LaBella, V.P.; Thibado, P.M. (2020): Efficient circuit design for low power energy harvesting. AIP Advances 10(10), 105006, https://doi.org/10.1063/5.0021479

Havrysh, V.; Hruban, V.; Sadovoy, O.; Kalinichenko, A.; Taikhrib, K. (2019): Sustainable energy supply based on sunflower seed husk for oil mills. In: International Conference on Modern Electrical and Energy Systems, Kremenchuk, Institute of Electrical and Electronics Engineers (IEEE), pp. 246–249, https://doi.org/10.1109/MEES.2019.8896443

Havrysh, V.; Kalinichenko, A.; Brzozowska, A.; Stebila, J. (2021): Life cycle energy consumption and carbon dioxide emissions of agricultural residue feedstock for bioenergy. Applied Sciences 11(5), 2009, https://doi.org/10.3390/app11052009

Herman; Surantha, N. (2019): Intelligent monitoring and controlling system for hydroponics precision agriculture. In: 7th International Conference on Information and Communication Technology. Kuala Lumpur, Institute of Electrical and Electronics Engineers (IEEE), pp. 1–6, https://doi.org/10.1109/ICoICT.2019.8835377

Hopner, V.; Wilhelm, V.E. (2021): Insulation life Span of low-voltage electric motors – A survey. Energies 14(6), 1738, https://doi.org/10.3390/en14061738

Hruban, V.; Honcharenko, I.; Martynenko, V.; Sadovoy, O. (2023): Obtaining electricity through the use of biogas, investments and perspectives. In: 5th International Conference on Modern Electrical and Energy System, Kremenchuk: Institute of Electrical and Electronics Engineers (IEEE), pp. 1–5, https://doi.org/10.1109/MEES61502.2023.10402480

Iegorov, O.; Iegorova, O.; Shinkarenko, I.; Glebova, M.; Sukovitsyna, I.; Hordiienko, A. (2023): Axial and radial induction motors comparative characteristics analysis to assess them use effectiveness. In: 5th International Conference on Modern Electrical and Energy System, Kremenchuk, Institute of Electrical and Electronics Engineers (IEEE), pp. 1–5, https://doi.org/10.1109/MEES61502.2023.10402492

International Electrotechnical Commission (IEC) (2022a): IEC 60034-18-1, https://webstore.iec.ch/en/publication/64618, accessed on 10 Dec 2025

International Electrotechnical Commission (IEC) (2022b): 60034-1, https://webstore.iec.ch/en/publication/65446, accessed on 10 Dec 2025

International Organisation for Standardisation (ISO) (2014): 10816-8, https://www.iso.org/obp/ui/#iso:std:iso:10816:-8:ed-1:v1:en, accessed on 10 Dec 2025

Korzhik, V.N. (1992): Theoretical analysis of the amorphization conditions for metallic melts under gas-thermal spraying. I. Determination of cooling velocities of dispersed sprayed material. Poroshkovaya Metallurgiya (9), pp. 56–61

Kozakevych, I. (2016): Separating the influence of anisotropic properties of an induction motor during sensorless control at low angular velocity. Information Technologies and Computer Engineering 13(1), pp. 35–40, https://itce.vn.ua/en/journals/t-35-1-2016/rozdilennya-vplivu-anizotropnikh-vlastivostey-asinkhronnogo-dviguna-pri-bezdatchikovomu-keruvanni-na-nizkiy-kutoviy-shvidkosti, accessed on 10 Dec 2025

Kyurchev, V.; Kiurchev, S.; Rezvaya, K.; Pastushenko, A.; Głowacki, S. (2023): Experimental Evaluation of the Impact of the Diametral Clearance on Output Characteristics of a Planetary Hydraulic Motor. In: Lecture Notes in Mechanical Engineering. Cham, Springer, pp. 84–94, https://doi.org/10.1007/978-3-031-32774-2_9

Mohan, T. (2024): Smart agriculture monitoring and controlling system using IoT. Criticism Viewpoint 14(2), pp. 52–68

Nadykto, V.; Arak, M.; Olt J. (2015): Theoretical research into the frictional slipping of wheel-type undercarriage taking into account the limitation of their impact on the soil. Agronomy Research 13(1), pp. 148–157, https://www.cabidigitallibrary.org/doi/pdf/10.5555/20153188908, accessed on 10 Dec 2025

Panas, A.; Kalaitzakis, N.; Pantouvakis, J.-P. (2024): Automated Tool for the Comparative Estimation of Earthmoving Productivity. Journal of Engineering Project and Production Management 14(3), 0026, https://doi.org/10.32738/JEPPM-2024-0026

Panchenko, A.; Voloshina, A.; Panchenko, I.; Titova, O.; Pastushenko, A. (2019): Reliability design of rotors for orbital hydraulic motors. IOP Conference Series: Materials Science and Engineering 708(1), 012017, https://doi.org/10.1088/1757-899X/708/1/012017

Panchenko, A.; Voloshina, A.; Titova, O.; Panchenko, I. (2021): The influence of the design parameters of the rotors of the planetary hydraulic motor on the change in the output characteristics of the mechatronic system. Journal of Physics: Conference Series 1741(1), 012027, https://doi.org/10.1088/1742-6596/1741/1/012027

Ponnusamy, V.; Natarajan, S. (2021): Precision agriculture using advanced technology of IoT, unmanned aerial vehicle, augmented reality, and machine learning. In: Smart Sensors for Industrial Internet of Things: Challenges, Solutions and Applications, ed.: Gupta, D.; de Albuquerque, V.H.C.; Khanna, A.; Mehta, P.L.; Cham, Springer, pp. 207–229, https://doi.org/10.1007/978-3-030-52624-5_14

Popescu, D.; Stoican, F.; Stamatescu, G.; Ichim, L.; Dragana, C. (2020): Advanced UAV-WSN system for intelligent monitoring in precision agriculture. Sensors 20(3), 817, https://doi.org/10.3390/s20030817

Pravin, A.R.; Franklin, J.; Pongiannan, R.K. (2023): Design of energy efficient BLDC motor pump for agriculture applications. In: International Conference on System, Computation, Automation and Networking. Puducherry, Institute of Electrical and Electronics Engineers (IEEE), pp. 1–6, https://doi.org/10.1109/ICSCAN58655.2023.10395608

Rayhana, R.; Xiao, G.; Liu, Z. (2021): Printed sensor technologies for monitoring applications in smart farming: A review. Institute of Electrical and Electronics Engineers (IEEE) Transactions on Instrumentation and Measurement 70, 9513419, https://doi.org/10.1109/TIM.2021.3112234

Safdar, M.; Shahid, M.A.; Yang, C.; Rasul, F.; Tahir, M.; Raza, A.; Sabir, R.M. (2024): Climate smart agriculture and resilience. In: Emerging Technologies and Marketing Strategies for Sustainable Agriculture,ed.: Garwi, J.; Masengu, R.; Chiwaridzo, O.; Hershey, PA, IGI Global Scientific Publishing, pp. 28–52, https://doi.org/10.4018/979-8-3693-4864-2.ch002

Scolaro, E.; Beligoj, M.; Estevez, M.A.P.; Alberti, L.; Renzi, M.; Mattetti, M. (2021): Electrification of agricultural machinery: A review. Institute of Electrical and Electronics Engineers (IEEE) Access 9, pp. 164520–164541, https://doi.org/10.1109/ACCESS.2021.3135037

State Standard (1985): GOST 9.308-85, https://meganorms.com/gost-9-308-85.html, accessed on 10 Dec 2025

Stavinskii, A.; Shebanin, V.; Avdieieva, E.; Sadovoy, O.; Vakhonina, L.; Tsyganov, A. (2019): Axial asynchronous motor with a rotor two-section cone-cylindrical magnetic circuit. In: International Conference on Modern Electrical and Energy Systems, Kremenchuk, Institute of Electrical and Electronics Engineers (IEEE), pp. 106–109, https://doi.org/10.1109/MEES.2019.8896477

Suglobov, V.; Krupko, V.; Krupko, I.; Vesnin, A. (2024): Mechanisms of earth-moving machinery with wave chain gears. Mining Journal of Kryvyi Rih National University 58(1), pp. 122–126, https://doi.org/10.31721/2306-5435-2024-1-112-122-126

Tropina, A.A.; Kuzmenko, A.P.; Marasov, S.V.; Vilchinsky, D.V. (2014): Ignition system based on the nanosecond pulsed discharge. IEEE Transactions on Plasma Science 42(12), pp. 3881–3885, https://doi.org/10.1109/TPS.2014.2339654

Varani, M.; Mattetti, M.; Molari, G. (2021): Performance evaluation of electrically driven agricultural implements powered by an external generator. Agronomy 11(8), 1447, https://doi.org/10.3390/agronomy11081447

Voloshina, A.; Panchenko, A.; Panchenko, I.; Zasiadko, A. (2019): Geometrical parameters for distribution systems of hydraulic machines. In: Modern Development Paths of Agricultural Production: Trends and Innovations. Cham, Springer, pp. 323–336, https://doi.org/10.1007/978-3-030-14918-5_34

Wang, X.; Li, B.; Gerada, D.; Huang, K.; Stone, I.; Worrall, S.; Yan, Y. (2021): A critical review on thermal management technologies for motors in electric cars. Applied Thermal Engineering 201(9), 117758, https://doi.org/10.1016/j.applthermaleng.2021.117758

Downloads

Veröffentlicht

19.12.2025

Zitationsvorschlag

Sukovitsyna, I., & Vakhonina, L. (2025). Konstruktionen und Parameter von asynchronen Elektromotoren für landwirtschaftliche Zwecke. Agricultural engineering.Eu, 80(4). https://doi.org/10.15150/ae.2025.3351

Ausgabe

Rubrik

Fachartikel